Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sai-Rong Fan and Long-Guan Zhu*

Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
H -atom completeness 97%
Disorder in solvent or counterion
R factor $=0.070$
$w R$ factor $=0.161$
Data-to-parameter ratio $=11.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[hexakis(1H-benzimidazole)bis (μ^{2}-5-sulfonatosalicylato)tricopper(II)] octahydrate]

The crystal structure of the title compound, $\left\{\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)_{2^{-}}\right.\right.$ $\left.\left.\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, is built of trinuclear complexes $\left[\mathrm{Cu}_{3}(\mathrm{bz})_{6}(\mathrm{ssal})_{2}\right](\mathrm{bz}=$ benzimidazole and ssal $=5$-sulfonatosalicylate trianion) and uncoordinated water molecules. The molecule of the complex occupies a special position on a crystallographic inversion centre. The Cu atom located on the inversion centre has a square planar coordination made up of the two N atoms of monodentate benzimidazole ligands and the O atoms of two bridging salicylates. The other crystallographically independent Cu atom has a square pyramidal environment formed by the N atoms of two more monodentate benzimidazole ligands, two chelate O atoms of the bridging salicylate and the sulfonate O atom of the sulfonatosalicylate ligand belonging to the neighbouring trimetallic complex. The latter coordination links the molecules of the complex into infinite chains running along the a axis. These chains are further connected by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding into a three-dimensional network.

Comment

5-Sulfosalicylate complexes have lately been receiving considerable attention, and numerous complexes of this kind have been synthesized (Gao et al., 2005; Smith et al., 2005). Among these, two copper complexes with trinuclear units, $\left[\mathrm{Cu}_{3}\left(2,2^{\prime} \text {-bipy }\right)_{2}(\text { ssal })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$, (II) (Wang et al., 2004), and $\left[\mathrm{Cu}_{3}(\mathrm{dpa})_{3}(\mathrm{ssal})_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, (III) (Fan \& Zhu, 2005) $\left(2,2^{\prime}\right.$ bipy $=2,2^{\prime}$-bipyridine and dpa $=2,2^{\prime}$-dipyridylamine), were reported. We present here a third 5-sulfonatosalicylate copper complex with the trinuclear Cu_{3} motif, (I).

Received 22 August 2005 Accepted 20 September 2005 Online 24 September 2005

ORTEP-3 (Farrugia, 1997) view of the structure of (I). Displacement ellipsoids are drawn at the 30% probability level. The minor component of the disordered water molecule has been omitted for clarity. [Symmetry codes (i): $1-x, 1-y, 2-z$; (ii): $-x, 1-y, 2-z$; (iii): $1+x, y, z$.]

The crystal structure of the title compound is built of centrosymmetric trinuclear complexes, $\left[\mathrm{Cu}_{3}(\mathrm{bz})_{6}(\mathrm{ssal})_{2}\right](\mathrm{bz}=$ benzimidazole and ssal $=5$-sulfonatosalicylate trianion), and uncoordinated water molecules; a fragment of the structure of (I) with the trinuclear complex and water molecules is shown in Fig. 1.

There are two crystallographically independent Cu atoms in each complex. One of them, Cu2, occupies a special position on a crystallographic inversion centre and has a square planar coordination, formed by the N atoms of two monodentate benzimidazole ligands $[\mathrm{Cu} 2-\mathrm{N} 5=2.000(5) \AA$] and the O atoms of two bridging sulfonatosalicylates $[\mathrm{Cu} 2-\mathrm{O} 2=$ 1.965 (3) Å]. The other crystallographically independent metal atom, Cu 1 , has a square pyramidal geometry formed by the N atoms of two more benzimidazole ligands $[\mathrm{Cu} 1-\mathrm{N} 1=$ 1.990 (4) \AA and $\mathrm{Cu} 1-\mathrm{N} 3=2.004$ (4) $\AA]$, two O atoms of the chelate salicylate fragment $[\mathrm{Cu} 1-\mathrm{O} 1=1.935$ (4) \AA and $\mathrm{Cu} 1-$ $\mathrm{O} 3=1.920(3) \AA]$ and the O atom of the sulfonate group of the neighbouring trinuclear complex in the apical position of the pyramid $\left[\mathrm{Cu} 1-\mathrm{O} 4^{\mathrm{ii}}=2.330\right.$ (4) \AA; symmetry code: (ii) $-x$, $1-y, 2-z]$. The latter contact gives rise to infinite chains running along the a axis of the crystal structure. The structure is further consolidated into a three-dimensional framework by extensive $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding (Table 2).

Comparison of the two previously reported copper complexes with trinuclear units with (I) shows that the ssal ligands in these three complexes have different coordination modes. In (III), ssal is a μ_{5} ligand, while in (I) and (II), the ssal anions are μ_{3} ligands; therefore, the structures of (I) and (II) feature one-dimensional chains, whereas the structure of (III) is built of two-dimensional layers. In the trinuclear units the Cu atoms in special positions have four-, six- and four-coordinated environments with square planar, octahedral and distorted tetrahedral geometry for (I), (II) and (III), respectively. The Cu atoms in general positions have either square

Figure 2
A view of the one-dimensional network in (I). H atoms and uncoordinated water molecules have been omitted for clarity.
pyramidal environments, as in (I) and (II), or octahedron geometry, as in (III). The comparison of bond lengths in these three complexes is given in Table 3.

Experimental

A mixture of $\mathrm{CuCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.170 \mathrm{~g}, 1 \mathrm{mmol})$, 5 -sulfosalicylic acid dihydrate $(0.126 \mathrm{~g}, 0.5 \mathrm{mmol}), \mathrm{Na}_{2} \mathrm{CO}_{3}(0.106 \mathrm{~g}, 1 \mathrm{mmol})$ and benzimidazole ($0.236 \mathrm{~g}, 2 \mathrm{mmol}$) in water/methanol ($v / v 2: 1$) solution $(30 \mathrm{ml})$ was refluxed for 2 h and filtered. After the mixture had been left to stand for 1 d , green block-shaped crystals of (I) precipitated; these were used for the X-ray diffraction experiment.

Crystal data

$\left[\mathrm{Cu}_{3}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{6} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{2}\right)_{6}\right] \cdot 8 \mathrm{H}_{2} \mathrm{O}$	$Z=1$
$M_{r}=1473.88$	$D_{x}=1.558 \mathrm{Mg} \mathrm{m}$
Triclinic, $P \overline{1}$	Mo $K \alpha$ radiation
$a=11.1489(6) \AA$	Cell parameters from 5186
$b=11.9699(6) \AA$	reflections
$c=12.5693(6) \AA$	$\theta=2.2-27.7^{\circ}$
$\alpha=99.302(1)^{\circ}$	$\mu=1.16 \mathrm{~mm}^{-1}$
$\beta=93.690(1)^{\circ}$	$T=295(2) \mathrm{K}$
$\gamma=107.155(1)^{\circ}$	Block, green
$V=1570.48(14) \AA^{\circ}$	$0.33 \times 0.21 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scan
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.701, T_{\text {max }}=0.893$
11391 measured reflections
5475 independent reflections
5149 reflections with $I>2 \sigma(I)$

$$
R_{\mathrm{int}}=0.020
$$

$$
\theta_{\max }=25.0^{\circ}
$$

$$
h=-13 \rightarrow 13
$$

$$
k=-14 \rightarrow 14
$$

$$
l=-14 \rightarrow 14
$$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0484 P)^{2} \\
&+6.6709 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.69 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.66 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.070$
$w R\left(F^{2}\right)=0.161$
$S=1.22$
5475 reflections
464 parameters
H -atom parameters constrained

Table 1
Selected bond angles (${ }^{\circ}$).

$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1$	91.45 (15)	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}$	90.56 (17)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	87.16 (16)	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{O} 2{ }^{\text {i }}$	180 (1)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 1$	166.81 (18)	$\mathrm{O} 2-\mathrm{Cu} 2-\mathrm{N} 5$	87.02 (17)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 3$	172.30 (18)	$\mathrm{O} 2{ }^{\text {i }}-\mathrm{Cu} 2-\mathrm{N} 5$	92.98 (17)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 3$	88.85 (17)	$\mathrm{N} 5-\mathrm{Cu} 2-\mathrm{N} 5^{\text {i }}$	180 (1)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	90.79 (18)	O5-S1-O4	113.4 (3)
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}$	97.02 (15)	O5-S1-O6	112.0 (2)
$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 4{ }^{\text {ii }}$	97.76 (16)	O4-S1-O6	110.3 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O}^{\text {iii }}$	95.42 (16)		

[^0]Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {iv }}$	0.86	2.01	2.836 (6)	161
N4-H4 ..O2w	0.86	1.96	2.822 (8)	178
N6-H6 . ${ }^{\text {O }} 3$ w	0.86	2.04	2.894 (10)	172
N6-H6 . ${ }^{\text {O }}$ w	0.86	2.60	3.099 (8)	118
$\mathrm{O} 1 w-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.85 (6)	1.96 (6)	2.798 (6)	170 (7)
$\mathrm{O} 2 w-\mathrm{H} 2 A \cdots \mathrm{O} w^{\prime v}$	0.86 (7)	1.90 (7)	2.73 (6)	162 (8)
$\mathrm{O} 2 w-\mathrm{H} 2 A \cdots \mathrm{O} w^{v}$	0.86 (7)	2.31 (6)	3.03 (3)	142 (8)
$\mathrm{O} 2 w-\mathrm{H} 2 B \cdots \mathrm{O}^{\text {vi }}$	0.85 (5)	1.94 (5)	2.781 (8)	170 (8)
$\mathrm{O} 3 w-\mathrm{H} 3 A \cdots \mathrm{O} 5 w^{\text {vii }}$	0.86 (4)	1.78 (7)	2.50 (6)	140 (7)
$\mathrm{O} 3 w-\mathrm{H} 3 A \cdots \mathrm{O} 5 w^{\text {vii }}$	0.86 (4)	1.96 (4)	2.81 (3)	169 (9)
$\mathrm{O} 3 w-\mathrm{H} 3 B \cdots \mathrm{O} 2 w^{\mathrm{i}}$	0.86 (3)	2.14 (6)	2.874 (16)	144 (8)
$\mathrm{O} 4 w-\mathrm{H} 4 A \cdots \mathrm{O} 5 w^{\prime v}$	0.85 (1)	1.98 (9)	2.80 (7)	163 (16)
$\mathrm{O} 4 w-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 5 w^{\text {viii }}$	0.85 (1)	2.36 (6)	3.20 (4)	169 (16)

Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x,-y+1,-z+2$; (iv) $x, y, z+1$; (v) $-x+1,-y+1,-z+3$; (vi) $x+1, y, z+1$; (vii) $-x+1,-y+2,-z+2$; (viii) $x, y-1, z$.

Table 3
Comparison of bond lengths (\AA) in three copper complexes with trinuclear units.

Bond	(I)	(II)	(III)
$\mathrm{Cu}-\mathrm{N}^{a}$	$2.000(5)$		$1.973(2)$
$\mathrm{Cu}-\mathrm{O}\left(\mathrm{COO}^{-}\right)^{a}$	$1.965(3)$	$1.960(4)$	$1.9447(19)$
$\mathrm{Cu}-\mathrm{O}\left(\mathrm{COO}^{-}\right)^{a}$		$2.486(4)$	
$\mathrm{Cu}-\mathrm{N}$	$1.990(4)$	$1.991(5)$	$1.977(2)$
$\mathrm{Cu}-\mathrm{N}$	$2.004(4)$	$1.996(5)$	$1.992(2)$
$\mathrm{Cu}-\mathrm{O}($ phenolato $)$	$1.920(3)$	$1.881(4)$	$1.900(2)$
$\mathrm{Cu}-\mathrm{O}\left(\mathrm{COO}^{-}\right)$	$1.935(4)$	$1.933(4)$	$1.942(2)$
$\mathrm{Cu}-\mathrm{O}\left(\mathrm{SO}_{3}^{-}\right)$	$2.330(4)$	$2.546(4)$	$2.318(2)$

[^1]All aromatic H atoms were placed in calculated positions, with $\mathrm{C}-$ $\mathrm{H}=0.93 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. The occupancies of water molecules $\mathrm{O} 4 w$ and $\mathrm{O} 5 w$ were initially refined to 0.60 (3) and 0.54 (2), respectively; they were then fixed at 0.5 . At this stage, the $\mathrm{O} 5 w$ molecule was disordered over two sites with the ratio of 0.341 (17):0.159 (17) for $\mathrm{O} 5 w$ and $\mathrm{O} 5 w^{\prime}$, respectively. The H atoms of these water molecules could not be located. H atoms of other water molecules were located in difference Fourier maps and were refined with a distance restraint of $\mathrm{O}-\mathrm{H}=0.85$ (1) \AA and fixed isotropic displacement parameter of $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Fan, S.-R. \& Zhu, L.-G. (2005). Acta Cryst. E61, m174-m176.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gao, S., Zhu, Z.-B., Huo, L.-H. \& Ng, S.-W. (2005). Acta Cryst. E61, m279m281.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, G., Wermuth, U. D. \& White, J. M. (2005). Acta Cryst. E61, o313-o316. Wang, W.-G., Zhang, J., Song, L.-J. \& Ju, Z.-F. (2004). Inorg. Chem. Commun. 7, 858-860.

[^0]: Symmetry codes: (i) $-x+1,-y+1,-z+2$; (ii) $-x,-y+1,-z+2$.

[^1]: Notes: (a) The distance involving the Cu atom in a special position.

